1,641 research outputs found

    Peg O\u27 My Heart (April 29, 1932)

    Get PDF
    Program for Peg O\u27 My Heart (April 29, 1932)

    Innovative Delivery Of MBA Business Foundation Coursework: Does Integrated, Team Teaching Make A Difference?

    Get PDF
    Team-teaching is often viewed as a viable alternative to traditional delivery approaches in graduate business programs.  However there is little research to support the benefits of team-teaching from a student learning perspective.  This paper demonstrates that student achievement in “downstream” MBA courses is significantly improved when they complete integrated, team-taught business foundation courses

    Treatment of overlapping gaseous absorption with the correlated-k method in hot Jupiter and brown dwarf atmosphere models

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.The correlated-k method is frequently used to speed up radiation calculations in both one-dimensional and three-dimensional atmosphere models. An inherent difficulty with this method is how to treat overlapping absorption, i.e. absorption by more than one gas in a given spectral region. We have evaluated the applicability of three different methods in hot Jupiter and brown dwarf atmosphere models, all of which have been previously applied within models in the literature: (i) Random overlap, both with and without resorting and rebinning, (ii) equivalent extinction and (iii) pre-mixing of opacities, where (i) and (ii) combine k-coefficients for different gases to obtain k-coefficients for a mixture of gases, while (iii) calculates k-coefficients for a given mixture from the corresponding mixed line-by-line opacities. We find that the random overlap method is the most accurate and flexible of these treatments, and is fast enough to be used in one-dimensional models with resorting and rebinning. In three-dimensional models such as GCMs it is too slow, however, and equivalent extinction can provide a speed-up of at least a factor of three with only a minor loss of accuracy while at the same time retaining the flexibility gained by combining k-coefficients computed for each gas individually. Pre-mixed opacities are significantly less flexible, and we also find that particular care must be taken when using this method in order to to adequately resolve steep variations in composition at important chemical equilibrium boundaries. We use the random overlap method with resorting and rebinning in our one-dimensional atmosphere model and equivalent extinction in our GCM, which allows us to e.g. consistently treat the feedback of non-equilibrium chemistry on the total opacity and therefore the calculated P–T profiles in our modelsWe thank the referee, Mark Marley, for comments that significantly improved the paper. This work is partly supported by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013 Grant Agreement No. 247060-PEPS and grant No. 320478-TOFU). D.S.A. acknowledges support from the NASA Astrobiology Program through the Nexus for Exoplanet System Science. J.M. acknowledges the support of a Met Office Academic Partnership secondment. The calculations for this paper were performed on the DiRAC Complexity machine, jointly funded by STFC and the Large Facilities Capital Fund of BIS, and the University of Exeter Super-computer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the University of Exeter

    Magnetic reconnection near the planet as a possible driver of Jupiter's mysterious polar auroras

    Get PDF
    Auroral emissions have been extensively observed at the Earth, Jupiter, and Saturn. These planets all have appreciable atmospheres and strong magnetic fields, and their auroras predominantly originate from a region encircling each magnetic pole. However, Jupiter’s auroras poleward of these “main” emissions are brighter and more dynamic, and the drivers responsible for much of these mysterious polar auroras have eluded identification to date. We propose that part of the solution may stem from Jupiter’s stronger magnetic field. We model large-scale AlfvĂ©nic perturbations propagating through the polar magnetosphere towards Jupiter, showing that the resulting <0.1° deflections of the magnetic field closest to the planet could trigger magnetic reconnection as near as ∌0.2 Jupiter radii above the cloud tops. At Earth and Saturn this physics should be negligible, but reconnection electric field strengths above Jupiter’s poles can approach ∌1 V m-1, typical of the solar corona. We suggest this near-planet reconnection could generate beams of high-energy electrons capable of explaining some of Jupiter’s polar auroras

    Toward a New UV Index Diagnostic in the Met Office's Forecast Model

    Get PDF
    This is the final version. Available on open access from AGU via the DOI in this recordThe United Kingdom sporadically experiences low ozone events in the spring which can increase UV to harmful levels and is particularly dangerous as sunburn is not expected by the public at this time of year. This study investigates the benefits to the UV Index diagnostic produced by the UM at the Met Office of including either, or both of, a more highly resolved spectrum, and forecasted ozone profiles from the ECMWF CAMS database. Two new configurations of the spectral parameters governing the radiative transfer calculation over the UV region are formulated using the correlated‐k method to give surface fluxes that are within 0.1 UV Index of an accurate reference scheme. Clear‐sky comparisons of modeled fluxes with ground‐based spectral observations at two UK sites (Reading and Chilton) between 2011 and 2015 show that when raw CAMS ozone profiles are included noontime UV indices are always overestimated, by up to 3 UV indices at a low ozone event and up to 1.5 on a clear summer day, suggesting CAMS ozone concentrations are too low. The new spectral parameterizations reduce UV Index biases, apart from when combined with ozone profiles that are significantly underestimated. When the same biases are examined spectrally across the UV region some low biases on low ozone days are found to be the result of compensating errors in different parts of the spectrum. Aerosols are postulated to be an additional source of error if their actual concentrations are higher than those modeled.Department for Environment Food & Rural Affairs (DEFRA

    A coupled cloud physics–radiation parameterization of the bulk optical properties of cirrus and its impact on the Met Office unified model global atmosphere 5.0 configuration

    Get PDF
    A new coupled cloud physics–radiation parameterization of the bulk optical properties of ice clouds is presented. The parameterization is consistent with assumptions in the cloud physics scheme regarding particle size distributions (PSDs) and mass–dimensional relationships. The parameterization is based on a weighted ice crystal habit mixture model, and its bulk optical properties are parameterized as simple functions of wavelength and ice water content (IWC). This approach directly couples IWC to the bulk optical properties, negating the need for diagnosed variables, such as the ice crystal effective dimension. The parameterization is implemented into the Met Office Unified Model Global Atmosphere 5.0 (GA5) configuration. The GA5 configuration is used to simulate the annual 20-yr shortwave (SW) and longwave (LW) fluxes at the top of the atmosphere (TOA), as well as the temperature structure of the atmosphere, under various microphysical assumptions. The coupled parameterization is directly compared against the current operational radiation parameterization, while maintaining the same cloud physics assumptions. In this experiment, the impacts of the two parameterizations on the SW and LW radiative effects at TOA are also investigated and compared against observations. The 20-yr simulations are compared against the latest observations of the atmospheric temperature and radiative fluxes at TOA. The comparisons demonstrate that the choice of PSD and the assumed ice crystal shape distribution are as important as each other. Moreover, the consistent radiation parameterization removes a long-standing tropical troposphere cold temperature bias but slightly warms the southern midlatitudes by about 0.5 K
    • 

    corecore